Model selection and estimation in regression with grouped variables
نویسندگان
چکیده
We consider the problem of selecting grouped variables (factors) for accurate prediction in regression. Such a problem arises naturally in many practical situations with the multi-factor ANOVA problem as the most important and well known example. Instead of selecting factors by stepwise backward elimination, we focus on estimation accuracy and consider extensions of the LASSO, the LARS, and the nonnegative garrote for factor selection. The LASSO, the LARS, and the nonnegative garrote are recently proposed regression methods that can be used to select individual variables. We study and propose efficient algorithms for the extensions of these methods for factor selection, and show that these extensions give superior performance to the traditional stepwise backward elimination method in factor selection problems. We study the similarities and the differences among these methods. Simulations and real examples are used to illustrate the methods.
منابع مشابه
Penalized Bregman Divergence Estimation via Coordinate Descent
Variable selection via penalized estimation is appealing for dimension reduction. For penalized linear regression, Efron, et al. (2004) introduced the LARS algorithm. Recently, the coordinate descent (CD) algorithm was developed by Friedman, et al. (2007) for penalized linear regression and penalized logistic regression and was shown to gain computational superiority. This paper explores...
متن کاملDevelopment of a Pharmacogenomics Model based on Support Vector Regression with Optimal Features Selection Approach to Determine the Initial Therapeutic Dose of Warfarin Anticoagulant Drug
Introduction: Using artificial intelligence tools in pharmacogenomics is one of the latest bioinformatics research fields. One of the most important drugs that determining its initial therapeutic dose is difficult is the anticoagulant warfarin. Warfarin is an oral anticoagulant that, due to its narrow therapeutic window and complex interrelationships of individual factors, the selection of its ...
متن کاملDevelopment of a Pharmacogenomics Model based on Support Vector Regression with Optimal Features Selection Approach to Determine the Initial Therapeutic Dose of Warfarin Anticoagulant Drug
Introduction: Using artificial intelligence tools in pharmacogenomics is one of the latest bioinformatics research fields. One of the most important drugs that determining its initial therapeutic dose is difficult is the anticoagulant warfarin. Warfarin is an oral anticoagulant that, due to its narrow therapeutic window and complex interrelationships of individual factors, the selection of its ...
متن کاملRobust Variable Selection in Functional Linear Models
We consider the problem of selecting functional variables using the L1 regularization in a functional linear regression model with a scalar response and functional predictors in the presence of outliers. Since the LASSO is a special case of the penalized least squares regression with L1-penalty function it suffers from the heavy-tailed errors and/or outliers in data. Recently, the LAD regressio...
متن کاملThe selection of the best from climate change model in the estimation of climatology variables for east region of the country by use fifth report data
Climate change is nowadays a major cause of concern in water related fields because it may cause more severe, shortened or prolonged droughts or floods in the future. In this research was tried to the best model of climate change is determined from the climate change models to determining the minimum temperature, maximum temperature and precipitation for the Birjand synoptic station. For this r...
متن کامل